Opti S03A Midterm Solutions Spring 2017

Solution to Problem 4)
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Therefore, In(x +1) = x — x? + x? — x: + x? — = anl[(—l)"“/n] x™. Substituting for
In(x + 1) in f(x) now yields
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It is now easy to see that f(x =0) =1and f(x = —1) = T 0.
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Setting k = 0, the above equation yields the value of the first coefficient as a, = 1. For
k > 1, the coefficient of x* must be zero, that is, 3.¥_,[(—=1)"ax_,/(n + 1)] = 0. We thus find
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The Taylor series expansion of f(x) is thus given by
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As a check on the validity of this expansion, note that the first five terms of the above Taylor
series yield f(—1) = 0.3486, f(—%) = 0.7223, f(0) =1, f(%) = 1.2327, f(1) = 1.4319,




while the actual values of the function are f(—1) = 0, f(—%) = 0.7213 ---, f(0) =1, f(%%) =
1.2331 -, and f(1) = 1.4426 ---.

¢) The functions In(x + 1) and 1/In(x + 1) are plotted below.
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The function f(x) = x/In(x + 1) is well defined over its domain x = —1, even at the
ambiguous points x = —1 and x = 0; see part (a). The slope of the function at the ambiguous
points is f'(x = —1) = o0 and f'(x = 0) = %. A plot of f(x) appears below.
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